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Abstract

In this paper we use a simple model of the Australian economy to empirically
examine the consequences of parameter uncertainty for optimal monetary policy.
Optimal policy responses are derived for a monetary authority that targets inflation
and output stability. Parameter uncertainty is characterised by the estimated
distribution of the model coefficient estimates. Learning is ruled out, so the
monetary authority can commit to its ex ante policy response. We find that taking
account of parameter uncertainty can recommend more, rather than less, activist
use of the policy instrument. While we acknowledge that this finding is specific to
the model specification, parameter estimates and the shocks analysed, the result
does stand in contrast to the widely held belief that the generic implication of
parameter uncertainty is more conservative policy.

JEL Classification Numbers: E52, E58
Keywords: optimal monetary policy, parameter uncertainty



ii

Table of Contents

1. Introduction 1

2. Sources of Forecast Uncertainty 2

3. An Economic Model 6

4. Optimal Policy Ignoring Parameter Uncertainty 9

5. Characterising Parameter Uncertainty 14

6. Optimal Policy Acknowledging Parameter Uncertainty 22

7. Conclusion 24

Appendix A: Generalising the Optimal Policy Problem 27

References 31



THE IMPLICATIONS OF UNCERTAINTY FOR
MONETARY POLICY

Geoffrey Shuetrim and Christopher Thompson

1. Introduction

Monetary authorities aim to achieve low and stable inflation while keeping output
at capacity. To achieve these goals they manipulate the policy instrument which
has an effect on economic activity and prices through one or more transmission
mechanisms. Monetary authorities face many difficulties in achieving these goals.
The current state of the economy, for example, is not known with certainty.
Moreover, the responses of the economy to demand and supply shocks are
difficult to quantify and new shocks are arriving all the time. As if these problems
are not enough, the transmission channels from the policy instrument to the
objectives are complex and imprecisely estimated.

Economic models are useful tools for helping to deal with these uncertainties. By
abstracting from less important uncertainties, models provide a framework within
which the workings of the economy can be quantified. In doing so, models
generally reduce the complexity of the policy decision-making process and go
some way towards helping monetary authorities achieve their goals. However, to
the extent that models are only an approximation to the ‘true’ economy, there will
always be uncertainty about the correct structure and parameters of an economic
model.

Blinder (1995), commenting in his capacity as a central banker, observed that
model uncertainty can have important implications for policy. In particular,
uncertainty about the model may make monetary authorities more conservative in
the sense that they determine the appropriate policy response ignoring uncertainty,
‘and then do less’. This conservative approach to policy was first formalised by
Brainard (1967). Although Blinder views the Brainard conservatism principle ‘as
extremely wise’, he admits that the result is not robust. For practical purposes, this
recommendation leaves two questions unanswered. First, how much should policy
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be adjusted to account for model uncertainty? Second, is conservatism always the
appropriate response?

This paper addresses both of these questions by generalising the Brainard model to
a multi-period horizon and a multivariate model. A small data-consistent model of
the Australian economy is used to illustrate the effect of parameter uncertainty on
policy responses. Contrary to Brainard’s conservatism result, we show that
parameter uncertainty can actually induce greater policy activism following most
types of shocks. We argue that this increased activism is primarily a consequence
of uncertainty about the persistence of shocks to the economy. This type of
uncertainty cannot be incorporated into the static model of Brainard.

The remainder of the paper is structured as follows. In Section 2, we discuss the
various sources of forecasting error which lie behind model uncertainty. Section 3
summarises the specification of a small macroeconomic model used in the
remainder of the paper. Section 4 shows how sensitive policy responses are to
changes in the parameter values when the policy-maker ignores this parameter
uncertainty. Section 5 demonstrates how parameter uncertainty can be
accommodated in the solution to a monetary authority’s optimal policy problem
and Section 6 illustrates the difference between naive policy, that ignores
parameter uncertainty, and policy that explicitly takes parameter uncertainty into
account. Section 7 concludes and summarises the practical implications for
monetary policy.

2. Sources of Forecast Uncertainty

Clements and Hendry (1994) provide a taxonomy of forecast error sources for an
economic system that can be characterised as a multivariate, linear stochastic
process. This system can generally be represented as a vector autoregressive
system of linear equations. Furthermore, most models of interest to policy-makers
can be characterised by a set of trends that are common to two or more variables
describing the economy. In these cases, the economic models can be written as
vector error-correction models.
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For these models, forecast errors can come from five distinct sources:

1. structural shifts;

2. model misspecification;

3. additive shocks affecting endogenous variables;

4. mismeasurement of the economy (data errors); and

5. parameter estimation error.

The first source of forecasting error arises from changes in the economic system
during the forecast period. The second source of forecasting error may arise if the
model specification does not match the actual economy. This may arise, for
example, if the long-run relationships or dynamics have been incorrectly specified.
Forecasting errors will also arise when unanticipated shocks affect the economic
system. These shocks accumulate, increasing uncertainty with the length of the
forecast horizon. If the initial state of the economy is mismeasured then this will
cause persistent forecast errors. Finally, forecast errors may also arise because
finite-sample parameter estimates are random variables, subject to sampling error.

By definition, without these sources of forecast error, there would be no
uncertainty attached to the forecasts generated by a particular system of equations.
Recent research by Clements and Hendry (1993, 1994 and 1996) explores the
relative importance of each of these sources of forecasting error. They find that
structural shifts in the data generating process or model misspecifications,
resulting in intercept shifts, are the most persistent sources of forecasting error in
macroeconomic models.

Rather than comparing the relative importance of each of these sources of
uncertainty for forecasting, this paper makes a contribution toward understanding
the implications of parameter uncertainty for monetary policy decision-making. In
the context of our economic model, we solve for ‘optimal policy’ explicitly taking
into account uncertainty about the parameter estimates. Comparing these optimal
policy responses with those which ignore parameter uncertainty allows us to draw
some conclusions about the implications of parameter uncertainty for monetary
policy.
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Why focus only on uncertainty arising from sampling error in the parameter
estimates? This question is best answered by referring to each of the remaining
sources of forecast error. Firstly, structural change is the most difficult source of
uncertainty to deal with because the extent to which the underlying structure of the
economy is changing is virtually impossible to determine in the midst of those
changes. Clements and Hendry have devoted considerable resources toward
exploring the consequences of such underlying structural change. However, this
type of analysis is only feasible in a controlled simulation. In the context of
models that attempt to forecast actual economic data, for which the ‘true’
economic structure is not known, this type of exercise can only be performed by
making assumptions about the types and magnitudes of structural shifts that are
likely to impact upon the economy. With little or no information on which to base
these assumptions, it is hazardous to attempt an empirical examination of their
consequences for the conduct of monetary policy.1

Similarly, it is difficult to specify the full range of misspecifications that may
occur in a model. Without being able to justify which misspecifications are
possible and which are not, analysis of how these misspecifications affect the
implementation of policy must be vague at best.

Turning to the third source of forecast errors, it is well known that when the
policy-maker’s objective function is quadratic, mean zero shocks affecting the
system in a linear fashion have no impact on optimal policy until the shocks
actually occur.2 To the extent that a linear model is a sufficiently close
approximation to the actual economy and given quadratic preferences, this implies
that the knowledge that unforecastable shocks will hit the economy in the future
has no effect on current policy. For this reason, the impact of random additive
shocks to the economic system is ignored in this paper. Instead, we concentrate on
multiplicative parameter uncertainty.

It is a common assumption in many policy evaluation exercises that the current
state of the economy is accurately measured and known with certainty. However,
                                          
1 However, it may be possible to exploit the work of Knight (1921) to generalise the expected

utility framework for policy-makers who are not certain about the true structure and evolution
of the economy. See, for example, Epstein and Wang (1994).

2 This is the certainty equivalence result discussed, for example, in Kwakernaak and Sivan
(1972).
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the initial state of the economy, which provides the starting point for forecasts, is
often mismeasured, as reflected in subsequent data revisions. It is possible to
assess the implications of this data mismeasurement for forecast uncertainty by
estimating the parameters of the model explicitly taking data revisions into
account (Harvey 1989). For example, in a small model of the US economy,
Orphanides (1998) calibrated the degree of information noise in the data and
examined the implications for monetary policy of explicitly taking this source of
uncertainty into account. Because this type of evaluation requires a complete
history of preliminary and revised data, it is beyond the scope of this paper.

In light of these issues, this paper focuses on parameter estimation error as the
only source of uncertainty. From a theoretic perspective, this issue has been dealt
with definitively by Brainard (1967). Brainard developed a model of policy
implementation in which the policy-maker is uncertain about the impact of the
policy instrument on the economy. With a single policy instrument (matching the
problem faced by a monetary authority, for example) Brainard showed that
optimal policy is a function of both the first and second central moments
characterising the model parameters.3 Under certain assumptions about the cross
correlations between parameters, optimal policy under uncertainty was shown to
be more conservative than optimal policy generated under the assumption that the
true parameters are actually equal to their point estimates. However, Brainard also
showed that it is possible for other assumptions about the joint distribution of the
parameters to result in more active use of the policy instrument than would be
observed if the policy-maker ignored parameter uncertainty.

Resolving the implications of parameter uncertainty for monetary policy then
becomes an empirical issue. To this end, the next section describes the impact of
this Brainard-type uncertainty on monetary-policy decision making in a small
macroeconomic model of the Australian economy.

                                          
3 Only the first and second moments are required because of the assumption that the

policy-maker has quadratic preferences. Otherwise it is necessary to maintain the assumption
that the parameters are jointly normally distributed.
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3. An Economic Model

In this paper, rather than constructing a more sophisticated model, we use a simple
model which has been developed in previous Reserve Bank research and which
was recently applied by de Brouwer and Ellis (1998). Work on constructing a
more realistic model for forecasting and policy analysis was beyond the scope of
this paper.

The model we use is built around two identities and five estimated relationships
determining key macroeconomic variables in the Australian economy: output,
prices, unit labour costs, import prices and the real exchange rate. Despite its size,
the model captures most aspects of the open economy monetary-policy
transmission mechanism, including the direct and indirect influences of the
exchange rate on inflation and output. The model is totally linear with only
backward-looking expectations on the part of wage and price setters and financial
market participants. The equations are estimated separately, using quarterly data
from September 1980 to December 1997, except for the real exchange rate
equation, which was estimated using quarterly data from March 1985.4 The
specification of the model is summarised in Table 1. The model is described in
more detail in Appendix B of de Brouwer and Ellis (1998).

It is also necessary to specify the preferences of the policy-maker, in this paper,
the monetary authority. Specifically, we assume that the policy-maker sets the
profile of the policy instrument, the nominal cash rate (short-term interest rate), to
minimise the intertemporal loss function:
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where gap  is the output gap ( Table 1), π  is the year-ended inflation rate of the
underlying CPI; *π  is the inflation target specified in year-ended terms and tE  is
the expectations operator conditional on information available at time t.

                                          
4 Unless otherwise specified, the equations were estimated by ordinary least squares and, where

necessary, the variance-covariance matrices of the coefficients were estimated using White’s
correction for residual heteroscedasticity and the Newey-West correction for residual
autocorrelation.
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Table 1: Specification of the Model
Output(a)

6)01.0(5)07.0(4)08.0(3)10.0(2)09.0(2)04.0(

1)04.0()07.0(1)04.0(111)04.0(1

07.009.005.001.009.001.0

01.029.027.0)05.010.0(23.0

−−−−−−

−−−−−

−−+−−∆+

∆+∆++−+−=∆

ttttt
farm

t

farm
t

US
t

US
ttttt

rrrrry

yyynftotreryy α

Prices(b)

3)01.0(3)01.0()02.0(11)02.0(11)02.0(2 12.002.008.0)(04.0)(04.0 −−−−−− +∆+∆+−+−+=∆ t
mp
ttt

mp
tttt gappulcpppulcp α

Unit labour costs(c)

1)03.0(2)05.0(1)05.0(
09.050.050.0 −−− +∆+∆=∆ tttt gapppulc

Import prices(d)

tt
fmp

t
mp
t

mp
t nernerppp ∆−+−−=∆ −−− )06.0(111)01.0(4 51.0)(18.0α

Real exchange rate(e)

tttttt totrrtotrerrer ∆+−++−=∆ −−−− )13.0(

*
11)07.0(1)17.0(1)10.0(5 39.1)(72.019.031.0α

Nominal exchange rate
*
tttt pprerner +−≡
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( )4−−−≡ tttt ppir

y Real non-farm gross domestic product
rer Real trade-weighted exchange rate
nftot Non-farm terms of trade
yus Real United States gross domestic product
yfarm Real farm gross domestic product
r Real (cash) interest rate
p Treasury underlying consumer price index
ulc Underlying nominal unit labour costs
pmp Tariff-adjusted import prices
gap Output gap (actual output less a production-

function based measure of potential output)

pfmp Foreign price of imports (trade-weighted price of
exports from Australia’s trading partners expressed
in foreign currency units)

ner Nominal trade-weighted exchange rate
tot Terms of trade
r* Foreign real short-term interest rate (smoothed

GDP-weighted average of real short-term interest
rates in the US, Japan and Germany)

p* Foreign price level
i Nominal cash rate (policy instrument)

Notes: All variables except interest rates are expressed in log levels.
Figures in ( ) are standard errors (adjusted for residual heteroscedasticity or autocorrelation where necessary).
(a) The coefficients on the lagged level of rer and nftot were calibrated so that an equal simultaneous rise in

both the terms of trade and the real exchange rate results in a net contraction of output in the long run.
(b) As specified, this equation implies linear homogeneity in the long-run relationship between prices,

nominal unit labour costs and import prices (this restriction is accepted by the data).
(c) The restriction that the coefficients on lagged inflation sum to unity was imposed (this restriction is

accepted by the data) and the equation was estimated by generalised least squares to correct for serial
correlation.

(d) As specified, this equation implies linear homogeneity between the domestic price of imports, the
nominal exchange rate and the foreign price of imports. This is equivalent to assuming purchasing power
parity and full first-stage pass-through of movements in the exchange rate and foreign prices to domestic
prices.

(e) A Hausman test failed to reject the null hypothesis that the first difference of the terms of trade was
exogenous so results are reported using OLS estimates (OECD industrial production and lagged
differences of the terms of trade were used as instruments when conducting the Hausman test).
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The first two terms in this objective function describe the policy-maker’s
preference for minimising the expected output gap and deviations of expected
inflation from target. The third term in the loss function represents the penalty
attached to volatility in the policy instrument. This term is included to reduce the
monetary authority’s freedom to set policy in a way that deviates too far from the
observed behaviour of the policy instrument. By penalising volatility in the policy
instrument, this term imposes a degree of interest-rate smoothing (Lowe and
Ellis 1997).

At each point in time, optimal policy is achieved by minimising the loss function
with respect to the path of the policy instrument over the forecast horizon, 1+t  to

ht + , subject to the system of equations described in Table 1.

The coefficients, α , β  and γ  are the relative weights (importance) attached to
minimisation of the output gap, deviations of inflation from target and movements
in the policy instrument. In this paper, we set α , β  and γ  equal to 0.02, 0.98 and
0.02 respectively. This particular combination of weights characterises a monetary
authority with a strong emphasis on keeping inflation close to target. The weights
were selected so that the optimal policy response brings inflation back to target
within a reasonable number of years for most common kinds of shocks. There is a
much higher weight on inflation than on the output gap because the output gap is
an important determinant of inflation. Therefore, policy which concentrates on
getting inflation back to target also indirectly aims to close the output gap. While
optimal policy is certainly sensitive to the choice of weights, they do not affect the
qualitative implications of parameter uncertainty for monetary policy.

This completes the description of the model and the objectives of the
policy-maker. The simulations in the following sections report optimal policy
responses to shocks that move the model from its steady state, where the steady
state is characterised by the error-correction terms in the equations.

The steady-state conditions are satisfied by normalising all of the constants and
variables to zero and assuming that the exogenous variables have zero growth
rates. This particular steady state has two advantages. First, the zero growth
assumption eliminates the need for more sophisticated modelling of the exogenous
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variables.5 Second, different parameter estimates imply different long-run
relationships, but the zero-level steady state is the only one that satisfies each of
these estimated long-run relationships. This means that the results which we
present later can be interpreted as deviations from baseline.

4. Optimal Policy Ignoring Parameter Uncertainty

All of the estimated regression parameters in Table 1 are point estimates of the
true parameter values and, as such, are random variables. The uncertainty
surrounding these point estimates is partly reflected in their associated standard
errors. This section highlights the consequences for monetary policy when the
policy-maker assumes that these point estimates accurately describe the true
economy. We generate a range of model-optimal policy responses and associated
forecast profiles that would obtain under different draws of the parameter
estimates from their underlying distribution. We describe these optimal policy
responses as ‘naive’ because they ignore parameter uncertainty. In Section 6, we
show how these policy responses can change when the optimal policy problem is
solved recognising parameter uncertainty.

For each equation, we assume that the parameters are normally distributed with
first moments given by their point estimates in Table 1 and second moments given
by the appropriate entries in the estimated variance-covariance matrix of the
parameter vector.6 Because each equation is estimated separately, there is no
information available concerning the cross correlations between the parameters in
the different equations. This implies that the variance-covariance matrix of the

                                          
5 However, in practice, generating forecasts and optimal policy responses from this model

would require explicit models for the exogenous variables, which would introduce additional
parameter uncertainty.

6 This approach to defining a distribution from which to draw the parameters of the model also
ignores uncertainty about the estimates of the variance-covariance matrices themselves. Note
also that the assumption that all parameter estimates are normally distributed is not correct.
For example, the speed of adjustment parameters in each of the error-correction equations in
Table 1 are actually distributed somewhere between a normal distribution and the
Dickey-Fuller distribution (Kremers, Ericsson and Dolado 1992). This distinction is unlikely
to make much difference to our results however, so for computational convenience, we have
maintained the assumption that all of the parameters are normally distributed.
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entire parameter vector is block diagonal, with each block given by the
variance-covariance matrix of each individual equation.7

While we characterise parameter uncertainty as being entirely caused by sampling
error, this understates the variety of factors that can contribute to imprecision in
the parameter estimates. When we estimate each of the five behavioural equations,
we assume that the parameters do not change over time. Any changes in the
parameters must then be partially reflected in the parameter variance-covariance
matrix. This contribution to parameter uncertainty actually derives from model
misspecification rather than sampling error.8 While we ignore these distinctions
for the remainder of the paper, we acknowledge that the sampling error
interpretation of the variance-covariance matrices may overstate the true sampling
error problems and understate the problems of model misspecification and
structural breaks in the model.

The remainder of this section presents forecasts that arise when the monetary
authority faces a given parameter-estimate draw and believes that this draw
represents reality, with no allowance made for uncertainty.9 By solving the
optimal-policy problem for a large number of parameter draws, we obtain a range
of forecasts which indicate the consequences of ignoring parameter uncertainty.
Starting from the steady state defined in the previous section, we assume that the
system is disturbed by a single one percentage point shock to one of the five
estimated equations. Then, for one thousand different parameter draws, the naive
optimal policy problem is solved to generate the path of the nominal cash rate and
the corresponding forecast profiles over a ten-year horizon. Each of the
simulations that follow are based on the same one thousand draws from the
underlying parameter distribution.

                                          
7 For the real exchange rate and terms of trade parameters in the output equation, which have

been calibrated, the appropriate terms in the variance-covariance matrix have been
approximated by the corresponding terms in the variance-covariance matrix of the
unconstrained (fully estimated) output equation.

8 An alternate interpretation is that instead of the parameters being fixed, but just estimated
with error, the parameters may in fact vary stochastically (and, in this case, from a
multivariate normal distribution). With this interpretation, however, the distinction between
model misspecification and sampling error becomes less clear.

9 Each draw of the model parameters requires pre-multiplication of a vector of independent
standard normal variates by the lower triangular Cholesky decomposition of the full
variance-covariance matrix.
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For example, consider a one percentage point shock to real output. Figure 1
summarises the results of this simulation. In this figure, the maximum, minimum
and median along with the first and third quartiles illustrate the dispersion of
forecast profiles generated by the different parameter draws. The central black line
denotes the median, while the limits of the light shaded regions are the maximum
and minimum. The darker shaded region corresponds to the inter-quartile range.

Note that the spread of forecasts around the median need not be symmetric. This is
because asymmetries result from non-linearities in the way that the model
parameters enter the construction of the forecasts. Although the model is linear in
each of the variables, forecasts can be high-order polynomials in the lag
coefficients.

To begin with, the output shock opens up a positive output gap which generates
wage pressures in the economy. Feedback between wages and prices means that
this wage pressure eventually feeds into price inflation. Consistent with the
monetary authority’s objectives, the optimal response to this shock is to initially
raise the nominal cash rate. However, the size of this initial tightening can vary by
up to three-quarters of a percentage point, depending on the parameter draw. With
backward-looking inflation expectations, the rise in nominal interest rates raises
the real cash rate, which has a dampening effect on output and eventually reverses
the upward pressure on unit labour costs and inflation. The higher real interest rate
also appreciates the real and nominal exchange rate, lowering inflation directly by
reducing the Australian dollar price of imports and indirectly, by reducing output
growth.

Over time, the initial tightening is reversed and eventually policy follows a
dampening cycle as the output gap is gradually closed and wage and price
inflation pressures subside. In the limit, all real variables and growth rates return
to target and the system returns to the steady state.10

                                          
10 While this is true for the model which we are using in this paper, after the 27 periods shown in

Figure 1, some of the variables do not completely return to steady state. This is because the
mean parameter draw results in a model which is quite persistent anyway and furthermore,
some of the more extreme parameter draws can generate larger and more long-lasting cyclical
behaviour in the variables. Eventually, however, all of the real variables and growth rates will
return to steady state.
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Figure 1: Real Output Shock
Deviations from equilibrium, percentage points
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What is most striking about these simulations is the range of different forecast
profiles caused by parameter uncertainty. For example, depending on the
parameter draw, the optimal policy response at any time during the forecast
horizon can vary by as much as one and a half percentage points. This variation
demonstrates that naive policy responses are not robust across parameter draws.
Faced with the observed parameter uncertainty in this model (captured by the
variance-covariance matrix), there is no way of knowing ex ante which parameter
draw is closest to the true parameters of the economy, and therefore, there is scope
for a wide margin of error following implementation of any one of these optimal
policy responses.
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It should be stressed that the optimal policy responses in Figure 1 assume no
learning on the part of the monetary authority. Although the monetary authority
may set interest rates according to a calculated optimal policy path, the economy
will only ever evolve according to the true parameter draw. Generically, the
forecasts of the monetary authority will be proved wrong ex-post, providing a
signal that the initial parameter estimates were incorrect. If the monetary authority
learns more about the true model parameters from this signal, then Brainard-type
uncertainty will gradually become less relevant over time.11 However, in the naive
policy responses shown in Figure 1, this type of learning is ruled out because we
assume that the policy-maker always believes that the given parameter estimates
are the true parameter values. In this case, any deviation between the actual and
forecast behaviour of the economy would be attributed to unanticipated shocks.

We also examine the range of forecast profiles obtained under shocks to the other
endogenous variables. Figure 2 shows the optimal response of the nominal cash
rate to various other one percentage point shocks. These simulations are similar to
that shown for the output shock in the sense that they all exhibit considerable
variation in the optimal policy response across different parameter draws.
However, in all cases, the optimal policy response drives the economy back into
equilibrium with real variables trending back to their baseline values and nominal
growth rates stabilising in accordance with the inflation target.

These simulations show that, where there is uncertainty regarding the true model
parameters, the naive optimal policy response can vary quite considerably with
observed parameter estimates. There are certainly considerable risks involved in
implementing policy assuming that the estimated parameters are equal to their true
values. In the next section, we demonstrate how the optimal policy problem can be
modified to explicitly take into account parameter uncertainty. Rather than solving
for the optimal path of the cash rate for a particular set of parameter estimates, the
monetary authority takes into account the uncertainty associated with the
distribution of parameter estimates and adjusts the policy response accordingly.

                                          
11 Of course, the policy-maker will not be able to resolve uncertainty through time if the source

of the ex-post forecasting error is parameter variation.
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Figure 2: Optimal Interest Rate Responses Ignoring Parameter Uncertainty
Deviations from equilibrium, percentage points
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5. Characterising Parameter Uncertainty

The main contribution of this paper is to solve for optimal policy in the context of
an empirical model of the Australian economy, taking into account parameter
uncertainty. To achieve this, we first generalise the Brainard formulation of
optimal policy under uncertainty to accommodate multivariate models and
multiple-period time horizons. We then draw out the intuition of this formulation
using a stylised example. In the following section, we apply this formulation to the
more fully-specified empirical model described in Section 3 in order to examine
some of the implications of parameter uncertainty for monetary policy.

Matrix notation makes the following generalisation of the optimal policy problem
and its solution considerably more transparent. The generalisation is derived in
more detail in Appendix A.
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The optimal policy problem for a monetary authority with quadratic preferences
given by Equation (1) and a backward-looking multivariate model of the economy
(that is linear in both the variables and shocks) can be written in the following
general form:

[ ]ΩTT
R

′= ELossmin , (2)

subject to:

GRFT += , (3)

where T  is a vector of policy targets in each period of the forecast horizon; R  is
the vector of policy instruments; the matrices, F  and G  are functions of both
history and the parameter estimates while Ω  summarises the penalties contained
in the objective function. The time subscript has been omitted for simplicity. This
general form for the optimal policy problem highlights its similarity to the
problem originally solved by Brainard. Because the loss function is quadratic and
the constraint set is linear, the usual optimal policy response under parameter
uncertainty will apply.

Specifically, if F  and G  are stochastic, then the solution to the optimal policy
problem is:
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where F  is the expectation of F  and G  is the expectation of G .

Alternatively, if F  and G  are deterministic (with values F  and G ), then the
solution to the problem becomes:

( ) .1 GΩFFΩFR* ′′−= − (6)
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F  and G  will be stochastic if they contain parameter estimates. Therefore, the
solution described by Equations (4) and (5) corresponds to optimal policy
acknowledging parameter uncertainty. The deterministic case in Equation (6)
describes the naive policy response, when the monetary authority ignores
parameter uncertainty. Comparing Equations (5) and (6), the difference between
optimal policy responses with and without parameter uncertainty can be ascribed
to the variance of F  and the covariance between F  and G . Brainard’s policy
conservatism result depends crucially on the independence of F  and G . However,
F  and G  will not be independent if they are derived from a model that exhibits
persistence.

To make the optimal-policy definition in Equation (5) operational, it is necessary
to compute the variance and covariance terms. This can be done using a sample
estimate of the loss function in Equation (2):
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where N is the number of parameter draws. This essentially computes the average
loss over N parameter draws. The first-order necessary condition for this loss
function to be minimised subject to the set of constraints in Equation (3) is then
just the sample estimate of (4):
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By averaging across a large number of parameter draws, optimal policy can be
computed from the linear relationship between the target variables of policy and
the policy instrument. As the number of draws from the estimated parameter
distribution increases, this approximation will tend to the true optimal policy given
by Equation (4). The naive policy response is computed by setting N=1 and using
the mean parameter draw to compute optimal policy from Equation (8). In this
case, the mean parameter draw is interpreted as the ‘true’ model parameters,
ignoring any uncertainty which we may have about them.
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To illustrate the intuition behind these results, we first examine optimal policy
responses in a stylised model which is an extension of the model considered by
Brainard (1967). In the next section, we apply the generalised optimal policy
solution to the model summarised in Table 1.

The original Brainard model assumed that the policy-maker minimised squared
deviations of a variable y from a target (normalised to zero) by controlling a single
policy instrument i, for an economy described by:

ttt iy εθ += , (9)

where θ  is an unknown parameter representing the effectiveness of policy and ε
is an independently and identically distributed white-noise process. To explore the
issues involved in generalising this specification, it is useful to consider an
economy that also includes a role for dynamics:

tttt yiy ερθ ++= −1 , (10)

where ρ  is another unknown parameter representing the degree of persistence in
the economy.

In this model, parameter uncertainty arises when ρ  and θ  can only be imprecisely
estimated. The central message of this section and the next is that the implications
of parameter uncertainty depend crucially upon the relative uncertainty about
policy effectiveness (θ ) and persistence ( ρ ). If uncertainty about policy
effectiveness dominates, then the usual Brainard conservatism result obtains.
However, if uncertainty about persistence is more important, then optimal policy
may be more aggressive.

The loss function is assumed to be the unweighted sum of squared deviations of
the target variable y in the current and all future periods. For a given shock to the
target variable, the optimal policy response is found by minimising this loss
function. Assume that the two parameter estimates in Equation (10) are drawn
from different independent normal distributions. For the uncertainty-aware
optimal policy, we take one thousand draws from the underlying parameter
distributions and compute the optimal policy response using the frequency
sampling approach described by Equation (8). We then compare this with the
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naive optimal policy response which is computed using only the mean parameter
draw.

To contrast the policy implications of each of these two types of uncertainty, we
derive the optimal policy responses to a standardised shock under differing levels
of relative uncertainty about each of the parameters. In what follows, we assume
that there is a one unit shock to the target variable in the initial period ( 10 =ε ), but
thereafter ε  is zero.

First, we examine the case where the persistence parameter is known with
certainty, but the policy effectiveness parameter can only be estimated
imprecisely.12 Figure 3(a) shows that the uncertainty-aware optimal policy
response to the shock in y is more conservative than the naive response.
Consequently, using the mean parameter draw to forecast the target variable
outcomes in Figure 3(b), the uncertainty-aware policy response means that the
target variable takes longer to return to target. Of course, the actual ex-post
outcome under both policy responses will depend upon the ‘true’ parameters,
which need not coincide with the mean parameter draw.

                                          
12 Specifically, in this simulation we assume that the persistence parameter ρ  takes the value

0.5 with certainty while the policy effectiveness parameter θ  is drawn from a normal
distribution with mean –0.5 and variance 0.25.
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Figure 3: Uncertainty about Policy Effectiveness
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For the two instrument paths shown in Figure 3(a), we can derive the implied
ex-post target variable outcomes at any time horizon for each of the one thousand
parameter draws. From this, we derive the distribution of target variable outcomes,
which is presented as a histogram in Figure 3(c). In this Figure we only show the
distribution of target variable outcomes two periods after the shock. As expected,
under naive policy, the distribution of outcomes is approximately normally
distributed with mean zero. For the conservative, uncertainty-aware optimal
policy, however, the distribution of target variable outcomes for the one thousand
parameter draws is slightly skewed and more tightly focused on small positive
outcomes. In this example, because the conservative policy response reduces the
spread of possible outcomes, it will generate a lower expected sum of squared
deviations of y from target and dominates the naive policy response. This, of
course, echoes Brainard’s result; when there is uncertainty about the effects of
policy then it pays to be more conservative with the policy instrument because the
larger the change in the instrument, the greater will be the uncertainty about its
final effect on the economy.
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At the other extreme, we now consider the case where the effectiveness of policy
is known with certainty, but the degree of persistence can only be imprecisely
estimated.13 Using the same one thousand parameter draws as before, the results in
Figure 4(a) suggest that the uncertainty-aware optimal policy response is now
more aggressive than the naive policy response. Figure 4(b) shows the target
variable outcomes for these two policy responses using the mean parameter draw.

Figure 4: Uncertainty about Persistence
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If the policy-maker ignores uncertainty, then the target variable will only follow
the path shown in Figure 4(b) if the ‘true’ parameters coincide with the mean
parameter draw. The target variable will overshoot, however, if persistence is
lower than expected.14 In this case, because the economy is less persistent than

                                          
13 In this case, θ  takes the value –0.5 with certainty and ρ  is drawn from a normal distribution

with mean 0.5 and variance 0.25.
14 Here an overshooting is defined as a negative target variable outcome because the initial

shock was positive. An undershooting, then, is defined as a positive target variable outcome.
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expected, the overshooting will be rapidly unwound, meaning that the shock is
less likely to have a lasting impact on the economy. In contrast, if the target
variable undershoots, then persistence must be higher than expected, so the effect
of the shock will take longer to dissipate. A policy-maker that is aware of
parameter uncertainty will take this asymmetry into account, moving the policy
instrument more aggressively in response to a shock.15 This will ensure that more
persistent outcomes are closer to target at the cost of forcing less persistent
outcomes further from target. This reduces the expected losses because the
outcomes furthest from target unwind most quickly.

Generally speaking, when there is uncertainty about how persistent the economy
is, that is, how a shock to y will feed into future values of y, then it makes sense to
be more aggressive with the policy instrument with the hope of minimising
deviations of the target variable as soon as possible. In Figure 4(c), for example,
the aggressive uncertainty-aware policy response reduces the likelihood of
undershooting, at the cost of increasing the chance of overshooting. This policy
response dominates, however, because the loss sustained by the many small
negative outcomes that it induces is more than offset by the greater loss sustained
by the large positive outcomes associated with naive policy.16

These two simple examples show that the implications of parameter uncertainty
are ambiguous. Policy should be more conservative when the effectiveness of
policy is relatively imprecisely estimated, while policy may be more aggressive
when the persistence of the economy is less precisely estimated. In between the
two extreme examples which we have considered here, when there is uncertainty
about all or most of the coefficients in a model, then one cannot conclude a priori
what this entails for the appropriate interest-rate response to a particular shock. In
the context of any estimated model, it remains an empirical issue to determine the
implications of parameter uncertainty for monetary policy. This is what we do in
the next section.

                                          
15 Of course, there is a limit on how aggressive policy can be before it causes worse outcomes.
16 However, in this case, it is important to recognise that if the loss function contained a discount

factor then this could reduce the costs of conservative policy. For example, with discounting,
the naive policy-maker in Figure 4 will be less concerned about bigger actual losses sustained
further into the forecast horizon. This result applies more generally; if policy-makers do not
care as much about the future as the present, then they may prefer less activism rather than
more.
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This example also highlights the importance of assuming that monetary authorities
never learn about the true model parameters. The monetary authority always
observes the outcome in each period of time. If the extent of the policy error in the
first period conveys the true value of ρ  or θ , then policy could be adjusted to
drive y  to zero in the next period. Ruling out learning prevents these ex-post
policy adjustments, making the initial policy stance time consistent. To the extent
that uncertainty is not being resolved through time, this is a relevant description of
policy. Additional data may sharpen parameter estimates but these gains are often
offset by instability in the underlying parameters themselves. Sack (1997)
explored the case in which uncertainty about the effect of monetary policy is
gradually resolved through time by learning using a simple model in which the
underlying parameters are initially chosen from a stochastic distribution.

6. Optimal Policy Acknowledging Parameter Uncertainty

In this section we present uncertainty-aware optimal policy computations for the
model described in Section 3 and compare them with naive optimal policy
responses. The uncertainty-aware optimal policy response computed from
Equation (8) is estimated using one thousand different draws from the underlying
parameter distribution. A large number of draws is required because of the large
number of parameters.

When computing the naive optimal policy response, it is necessary to specify the
parameter vector that the monetary authority interprets as being the ‘true’
parameter values. Usually this vector would contain the original parameter
estimates. However, we compute the naive policy response using the average
value of the parameter vector draws. This prevents differences between the two
policy profiles being driven by the finite number of parameter draws, the average
of which may not coincide exactly with the original parameter draw.

Beginning with a one percentage point shock to output, Figure 5(a) compares
optimal policy responses using the model described in Section 3. The darker line
represents optimal policy when parameter uncertainty is taken into account while
the lighter line represents the naive optimal policy response.
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Figure 5: Optimal Interest Rate Responses Ignoring and
Acknowledging Parameter Uncertainty
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The key feature of interest in Figure 5(a) is the larger initial policy response when
uncertainty is taken into account. While later oscillations in the cash rate are
similar in magnitude, the early response of the cash rate is somewhat larger when
policy takes parameter uncertainty into account. The finding that policy should
react more aggressively because of parameter uncertainty is specific to the output
shock used to generate Figure 5(a). For example, the naive policy response is
relatively more aggressive for a one percentage point shock to the real exchange
rate, as shown in Figure 5(b). This suggests that the persistence of a real exchange
rate shock is more precisely estimated than the persistence of an output shock
relative to the estimated effectiveness of policy for each of these shocks. With less
relative uncertainty about the persistence of a real exchange rate shock, the
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optimal policy response taking into account uncertainty is more conservative
because it is dominated by uncertainty about policy effectiveness.

Figures 5(c) - 5(e) present the policy responses to shocks to import prices,
consumer prices and unit labour costs respectively. In each case, the naive policy
response is initially more conservative than the policy response which takes
account of parameter uncertainty.

These three types of nominal shocks to the model confirm that conservatism is by
no means the generic implication of parameter uncertainty. In our model, it
appears that uncertainty about the effectiveness of the policy instrument is
generally dominated by uncertainty about model persistence and this explains the
more aggressive optimal policy response to most of the shocks which we
examined.

7. Conclusion

This paper extends Brainard’s formulation of policy-making under uncertainty in
several directions. First, it generalises the solution of the optimal policy problem
to accommodate multiple time-periods and multiple objectives for policy. This
generalisation develops the stochastic properties of the equations relating target
variables to the policy instrument from the estimated relationships defining the
underlying economic model.

Whereas uncertainty about the effectiveness of monetary policy tends to
recommend more conservative policy, we explore the intuition for why other
forms of parameter uncertainty may actually lead to more aggressive policy. In a
simple example, we show that uncertainty about the dynamics of an economy can
be a source of additional policy activism. However, this consequence of parameter
uncertainty is only relevant in a multi-period generalisation of the Brainard model.
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In the context of any specific model, it is an empirical issue to determine the exact
implications of parameter uncertainty for monetary policy. We examine this using
a small linear model of the Australian economy that captures the key channels of
the monetary policy transmission mechanism within an open-economy framework.
Optimal policy responses ignoring parameter uncertainty are compared with
optimal responses that explicitly take parameter uncertainty into account. While
the differences between these policy responses vary with the source of shocks to
the economy, our evidence suggests that, for most shocks in our model, parameter
uncertainty motivates somewhat more aggressive use of the instrument.

Although the results in this paper are reported as deviations from equilibrium, the
method used to construct optimal policy responses under parameter uncertainty is
also applicable in a forecasting environment where past data must be taken into
account. The approach is applicable to all backward-looking linear models in
which the objectives of the policy-maker are quadratic.

The simulations also demonstrate how frequency-sampling techniques can be used
to evaluate the analytic expression for optimal policy under parameter uncertainty,
despite the presence of complex expectations terms. This approach to policy
determination is as practical, and more theoretically appealing, than the
application of alternative rules-based approaches.

While the findings of the paper are of considerable interest, they should not be
overstated. In particular, the implications of parameter uncertainty are dependent
upon the type of shock being accommodated. They are also dependent upon the
specification of the model. For example, changes to the model specification could
substantially alter the measured uncertainty attached to the effectiveness of policy
relative to the measured uncertainty associated with the model’s dynamics. If the
techniques developed in this paper are to be of wider use, the underlying model
must first be well understood and carefully specified. Also, it is worth
remembering that, although our model suggests that optimal monetary policy
taking account of uncertainty is more activist for most kinds of shocks, the
difference in policy response is quite small relative to the degree of conservatism
that is actually practiced by most central banks.
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In this paper we have not sought to argue that conservative monetary policy is not
optimal. In fact, there are probably a number of good reasons why conservative
policy may be optimal. Instead, the central message of the paper is that, if we are
to motivate conservative monetary policy, then explanations other than Brainard’s
are required.
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Appendix A: Generalising the Optimal Policy Problem

In this appendix, we generalise Brainard’s (1967) solution to the optimal policy
problem for a monetary authority with quadratic preferences using a dynamic,
multivariate model with stochastic parameter uncertainty.

To begin with, we show how the optimal policy problem for a monetary authority
with quadratic preferences given by Equation (1) and a backward-looking
multivariate model of the economy (that is linear in both the variables and the
shocks) can be written in the following general form:

[ ]TΩT
R

′= ELossmin , (A1)

subject to:
GRFT += . (A2)

To prove this, recall that the preferences of the monetary authority can be
summarised by the following intertemporal quadratic loss function:
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which can be rewritten using matrix notation as:

[ ]tttttttELoss RΓIΓIRΠΠYY )()( −′−′−′+′= γβα (A4)
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Γ  is the matrix that lags the nominal interest rate vector tR  by one period; and I
is an ( hh× ) identity matrix. The subscript t  denotes the current date from which
forecasts are being generated.

Given that the model of the economy (Table 1) is linear, the policy target variables
are affine transformations of the forecast profile for the policy instrument:

BRAY += tt (A8)

and

DRCΠ += tt , (A9)

where A , B , C  and D  are stochastic matrices constructed from the parameters of
the model and the history of the economy. The structure of these stochastic
matrices is determined by the relationships laid out in the definition of the model’s
equations. Matrices B  and D  are the impulse response functions of the output gap
and inflation to a shock at time t. Likewise, matrices A  and C  are the marginal
impact of the nominal cash rate on the output gap and inflation respectively.

By defining tt RΓΙ∆ )( −≡  as the vector of first differences in the nominal cash
rate over the forecast horizon, it is possible to specify the full set of policy targets
as:

[ ]tttt ∆ΠYT ′′′= . (A10)

Then, upon dropping time subscripts, the optimal policy problem can be restated
succinctly as:

[ ]TΩT
R

′= ELossmin , (A11)

subject to:
GRFT += , (A12)

where the matrices F  and G  are defined in terms of A , B , C , D  and )( ΓΙ −  as:
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and the weights on the different components of the loss function α , β  and γ ,
have been subsumed into the diagonal matrix Ω  according to:
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where I  is the same identity matrix used to define the first differences in the cash
rates, ∆ . Ignoring the fact that it is in matrix notation and observing that the target
values of the target variables have been normalised to zero, this problem is exactly
the same as that examined by Brainard (1967).

If F  and G  are stochastic, the solution to the optimal policy problem described by
Equations (A1) and (A2) is:

[ ] ,)()(~ 1 GΩFFΩFR* ′′−= − EE (A15)

which can also be expressed as:
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Alternatively, if F  and G  are deterministic (with values F  and G ), then the
solution to the optimal policy problem is:

( ) .1 GΩFFΩFR* ′′−= − (A17)
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To show this, rewrite the loss function in Equation (A1) by adding and subtracting
the expected values of T  from it, yielding:

[ ])()(min ′+−′+−= TTTΩTTT
R

ELoss . (A18)

Upon expanding, this loss function can be also be expressed as:

[ ] [ ]
[ ] ,)()(
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taking advantage of the fact that TT ≡)(E .

Substituting in Equation (A2) and simplifying then yields:
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The first order necessary condition for this optimisation problem is obtained by
differentiating with respect to R :

02~2~)()(2~)()(2 =′+′+−′−+−′− GΩFRFΩFRGGΩFFRFFΩFF *** .(A21)

Solving for *R~  then gives optimal policy when taking uncertainty into account, as
expressed in Equations (A15) and (A16). Given that the loss function is strictly
convex, this first order necessary condition is also sufficient for a minimum of the
expected loss function.

The naive optimal policy response shown in Equation (A17) obtains as a
simplification of Equation (A16) when F  is set to F  and G  is set to G , that is,
when F  and G  are deterministic.
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