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Abstract
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creases in inflation with a more than one-for-one increase in the nominal
interest rate, are stabilizing. In this paper, we argue that once the zero
bound on nominal interest rates is taken into account, active interest rate
feedback rules can easily lead to unexpected consequences. Specifically,
we show that even if the steady state at which monetary policy is active
is locally the unique equilibrium, typically there exists an infinite num-
ber of equilibrium trajectories originating arbitrarily close to that steady
state that converge to a liquidity trap, that is, a steady state in which the
nominal interest rate is near zero and inflation is possibly negative.
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1 Introduction

Since John Taylor’s [23] seminal paper describing Federal Reserve policy, there
has been a resurgence of interest in monetary policy rules that target the nominal
rate. Much of the literature has explored the efficiency and dynamic effects
of such policies, with particular attention to their stabilization properties. A
central policy recommendation that has emerged from this body of research is
that “active monetary policy,” that is, a policy that strongly responds to the
rate of inflation in setting the nominal interest rate, is stabilizing.1 In an earlier
paper (Benhabib et al. [2]), we argue that this result depends very much on
the specification of the model, and that indeed often active monetary feedback
policies lead to multiple equilibria under standard specifications, assumptions
and calibrations, including models with sticky prices, Taylor rules that allow for
leads or lags, and Ricardian and non-Ricardian monetary-fiscal regimes. In this
paper, we take an even stronger position and argue that active monetary policy
generally leads to indeterminacy and multiple equilibria, and that pursuing
such a policy can easily lead to unexpected consequences even in the simplest
and most innocuous monetary models, using the simplest and most standard
assumptions.

Our method of analysis departs from the conventional local approach to
study multiple equilibria that proceeds by linearizing around a steady state. The
reason for this departure stems from the observation that the nominal rate must
be constrained to be non-negative, since negative nominal rates are impossible.
It immediately follows from this observation, as we illustrate below, that if
there is a steady state with an active monetary policy, there must necessarily
exist another steady state with a passive policy. As a result, local analysis is
inadequate because paths of the economy diverging from one steady state can
converge to the other steady state or to another attracting set, thus qualifying
as equilibrium trajectories. We show these results in the context of flexible and
sticky-price models both theoretically and through simulations of calibrated
economies.

To intuitively illustrate the source of multiplicity, consider a simplified Taylor
rule whereby the monetary authority sets the nominal rate as a non-decreasing
function of inflation: R = R(π), where R denotes the nominal interest rate and
π denotes the rate of inflation. Combining this rule with the Fisher equation,
R = r + π, where r is the real interest rate, yields

R(π) = r + π

This steady-state relation is common to a wide range of monetary models with
representative agents and an infinite horizon and holds irrespective of whether
prices are flexible or sticky or of whether money enters the model through the

1For papers arriving at this conclusion in the context of non-optimizing models, see Levin
et al. [13] and Taylor [24, 25]; for optimizing models with flexible prices, see Leeper [12]; and
for optimizing models with nominal frictions see Rotemberg and Woodford [18, 19], Christiano
and Gust [7], and Clarida et al. [5].
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utility function, the production function or a cash-in-advance constraint. Sup-
pose that there exists a steady state with active monetary policy, that is, a value
of π that solves the above equation and satisfies R′(π) > 1. Suppose in addi-
tion that the feedback rule is continuous and respects the zero lower bound on
nominal rates (R(π) ≥ 0). Then there must exist another steady state in which
monetary policy is passive, that is, a steady state in which R′(π) < 1 (figure 1).
Note that for the existence of two solutions to the steady-state Fisher equation

Figure 1: Taylor Rules, zero-bound on nominal rates, and multiple steady states
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it is not crucial that the Taylor rule be continuous. It is sufficient that the Tay-
lor rule is non-negative, non-decreasing and that one solution occurs at a value
of π for which monetary policy is active. The bottom right panel of figure 1
displays a case in which there is a unique solution to the Fisher equation even
though at that solution the feedback rule is active. The absence of a second
solution results not because the Taylor rule is discontinuous but because it is
non-monotonic. We will not explore the macroeconomic consequences of Taylor
rules of this type because we believe that they are irrelevant for it is implausible
that the central bank will implement a discrete increase in the nominal interest
rate in the context of declining inflation.

The existence of multiple solutions to the steady-state Fisher equation im-
mediately establishes the possibility of the existence of at least two steady state
equilibria. However, this need not be the case, for in general the equilibrium
conditions will involve additional equations. In this paper, we show that the
presence of a steady state equilibrium at which monetary policy is active typi-
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cally gives rise to at least one other steady-state equilibrium at which monetary
policy is passive. But it would be naive to conclude that active interest-rate rules
are destabilizing solely because they give rise to multiple steady-state equilib-
ria. First, although empirical studies show that in the past decades monetary
policy in major industrialized countries can be described quite accurately by
active interest rate feedback rules (e.g., Clarida et al. [6]), observed inflation
dynamics are in general quite smooth, giving little credence to a model in which
movements in inflation at business-cycle frequency are due to jumps from one
steady state to another. Second, it is equally unconvincing that policy makers
change the stance of monetary policy from active to passive at high frequencies.

The main result of this paper is that Taylor rules are destabilizing because
the multiplicity of steady-state equilibria that they induce opens the door to a
much larger class of equilibria. Specifically, we show that in general there exists
an infinite number of equilibrium trajectories originating in the vicinity of the
active steady state that converge either to the steady state at which monetary
policy is passive (a saddle connection) or to a stable limit cycle around the active
steady state. Interestingly, along both the saddle connection and the limit cycle,
the inflation rate fluctuates for long periods of time around the steady state at
which monetary policy is active. Thus, for example, an econometrician using
data generated from a saddle connection equilibrium to estimate the slope of the
interest rate feedback rule may very well conclude that the economy is displaying
stationary fluctuations around the active steady state, even though the economy
is in fact spiraling down into a liquidity trap.

Simulations of calibrated versions of a sticky-price model indicate that saddle
connections from the active steady state to the passive steady state exist for em-
pirically plausible parameterizations and are indeed the most typical pattern as
they are robust to wide parameter perturbations. This type of equilibrium is of
particular interest because it sheds light on the precise way in which economies
may fall into liquidity traps. The results suggest that central banks that main-
tain an active monetary policy stance near a given inflation target are more
likely to lead the economy into a deflationary spiral—like the one currently ob-
served in Japan and, as some may argue, in the United States—than central
banks that maintain a globally passive monetary stance such as an interest- or
exchange-rate peg.

2 Taylor rules, the zero bound on nominal rates,

and liquidity traps: a simple example

In the introduction we point out that Taylor rules in combination with the zero
bound on nominal rates may give rise to the existence of two steady states, in
one of which the inflation rate and the nominal interest rate are below their
intended targets and monetary policy is passive. In this section, we present a
simple flexible-price model to show that these two steady states are connected
by an equilibrium trajectory. Specifically, we demonstrate that the economy
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can slide from the intended steady state to the unintended one. We interpret
this result as meaning that in the presence of a Taylor rule, a liquidity trap may
emerge as an equilibrium outcome.

Consider an endowment economy populated by a large number of identical
infinitely lived households with preferences defined over consumption and real
balances and described by the utility function∫ ∞

0

e−rtu(c,m)dt,

where c denotes consumption and m denotes real balances. The household’s
instant budget constraint is given by

c + τ + ȧ = (R − π)a−Rm+ y,

where τ denotes lump-sum taxes, a denotes real financial wealth, consisting of
interest-bearing bonds and money balances, R is the nominal rate of return on
bonds, π is the inflation rate, and y is a constant endowment. The right-hand
side of the budget constraint represents the sources of income: real interest on
the household’s assets net of the opportunity cost of holding money and the
endowment. The left hand side shows the uses of income: consumption, tax
payments, and increases in the stock of real wealth. Households are also subject
to a borrowing limit of the form limt→∞ e−

∫ t
0 [R(s)−π(s)]dsa(t) ≥ 0, that prevents

them from engaging in Ponzi games. The household chooses paths for con-
sumption, real balances, and wealth that satisfy the instant budget constraint,
the no-Ponzi-game borrowing limit with equality, and the following optimality
conditions

uc(c,m) = λ (1)
um(c,m) = λR (2)

λ̇ = λ[r + π −R(π)], (3)

where λ is a Lagrange multiplier associated with the instant budget constraint.
Equilibrium in the goods market requires that consumption be equal to the
endowment

c = y (4)

Assuming that consumption and real balances are Edgeworth complements
(ucm > 0) and that the instant utility function is concave in real balances
(umm < 0), equations (1), (2), and (4) define a decreasing function linking λ
and R:

λ = L(R); L′ < 0. (5)

Suppose that the monetary authority follows an interest rate feedback rule
of the form

R = R(π),
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where the function R(·) is positive, increasing, strictly convex, and differentiable.
Suppose further that there exists an inflation rate π∗ at which the steady-state
Fisher equation is satisfied and at which the feedback rule is active, that is,
R(π∗) = r+π∗ and R′(π∗) > 1. Then, as the top left panel of figure 1 illustrates,
there exists an inflation rate πL < π∗ such that the steady-state Fisher equation
is satisfied and the interest rate rule is passive, that is, R(πL) = r+πL, R′(πL) <
1. Combining this feedback rule with (3) and (5), we obtain the following first-
order differential equation describing the equilibrium dynamics of inflation2

π̇ =
−L(R(π))

L′(R(π))R′(π))
[R(π) − π − r] (6)

Because −L/(L′R′) is always positive, the sign of π̇ is the same as the sign of
R(π)− π− r. Figure 2 illustrates the inflation dynamics implied by equation 6.

Figure 2: The liquidity trap in a flexible price model

ππ*πL

π<0 ⋅     π>0⋅     π>0      ⋅     

 r+πR(π)   

The high-inflation, active steady state π∗ is unstable, in the sense that trajecto-
ries initiating near π∗ diverge from π∗. Thus, if one limits the analysis to equilib-
ria in which π remains forever in a small neighborhood around π∗, then the only

2In equilibrium the no-Ponzi-game condition must hold with equality. This will be the
case if the fiscal authority follows a “Ricardian” policy whereby the present discounted value
of future expected total government liabilities converges to zero regardless of the particular
paths taken by inflation and nominal interest rates. We present an example of such fiscal
policy in the next section.
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perfect-foresight equilibrium is the active steady state itself. However, if one al-
lows for equilibria in which π can take values in a larger neighborhood around
π∗ that includes the passive steady state πL, then a large number of equilibrium
trajectories become possible. In particular, any inflation path starting between
πL and π∗ and satisfying (6) represents a perfect-foresight equilibrium. All such
trajectories converge to the low-inflation, low-interest-rate, passive steady state
πL. Note that equilibrium trajectories of this type can originate arbitrarily close
to the high-inflation, high-interest-rate, active steady state π∗. In this environ-
ment, all that is needed for the economy to fall into the liquidity trap is that
people expect the economy to slide into a deflationary phase. Taylor rules in
combination with the zero bound on nominal rates also give rise to a saddle
connection in the context of discrete-time models. Schmitt-Grohé and Uribe
[21] show this result in the context of a cash-in-advance, flexible-price model.

The simple flexible-price economy analyzed thus far conveys the main mes-
sage of the paper in a direct and transparent way. However, most of the litera-
ture devoted to evaluating the stabilizing properties of Taylor rules includes as
a central theoretical element the presence of nominal rigidities. Consequently,
in the remainder of the paper we consider a model with price stickiness. In the
model discussed in this section, the existence of equilibria originating close to
the active steady state and converging to the passive steady state depends on the
assumption that consumption and real balances are Edgeworth complements.
However, as we will show below in the presence of sluggish price adjustment a
saddle path connection between the two steady states also emerges for prefer-
ences displaying Edgeworth substitutability as well as additive separability in
consumption and real balances.

3 A Sticky-Price Model

The economy is assumed to be populated by a continuum of household–firm
units indexed by j each of which produces a differentiated good Y j . Firms have
market power and set prices so as to maximize profits. The demand faced by
firm j is given by Y dd(P j/P ), where Y d denotes the level of aggregate demand,
P j the price firm j charges for the good it produces, and P the aggregate price
level. Such a demand function can be derived by assuming that households
have preferences over a composite good that is produced from differentiated
intermediate goods via a Dixit-Stiglitz production function. The function d(·)
is assumed to be twice continuously differentiable, decreasing, and to satisfy
d(1) = 1 and d′(1) < −1. The restriction imposed on d′(1) is necessary for the
firm’s problem to be well defined in a symmetric equilibrium. The production
of good j uses labor, hj , supplied by household j, as the only input:

Y j = y(hj)

where y(·) is twice continuously differentiable, positive, strictly increasing, strictly
concave and satisfies the Inada conditions.
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We introduce nominal price rigidity, following Rotemberg [17], by assuming
that households face convex costs of adjusting prices. Specifically, the house-
hold’s lifetime utility function is assumed to be of the form

U j =
∫ ∞

0

e−rt


u(cj,mj) − z(hj) − γ

2

(
Ṗ j

P j
− π∗

)2

 dt (7)

where cj denotes consumption of the composite good by household j, mj ≡
M j/P denotes real money balances held by household j, and M j denotes nom-
inal money balances. The utility function u(·, ·) is assumed to be twice continu-
ously differentiable and to satisfy uc, um > 0, ucc, umm < 0, uccumm− u2

cm > 0,
and limc→0 uc(c,m) = limm→0 um(c,m) = ∞. To ensure normality of con-
sumption and real balances, we further assume that ucc − ucmuc/um < 0 and
umm− ucmum/uc < 0. The function z(·) measures the disutility of labor and is
assumed to be twice continuously differentiable, increasing, and convex. The pa-
rameter γ measures the degree to which household–firm units dislike to deviate
in their price-setting behavior from the constant rate of inflation π∗ > −r.

Let aj denote the real value of the household j’s financial wealth which
consists of the sum of real money holdings and government bonds. Then aj

evolves according to the following law of motion:

ȧj = (R − π)aj −Rmj +
P j

P
y(hj) − τ − cj , (8)

where R denotes the nominal interest rate on government bonds, π denotes
the rate of change in the aggregate price level, and τ denotes real lump-sum
taxes. The instant budget constraint (8) says that the change in household
j’s real wealth, ȧj , is equal to real interest earnings on wealth, (R − π)aj ,
net of the opportunity cost of holding money, Rmj, plus disposable income,
(P j/P )y(hj) − τ , minus consumption expenditure, cj . Households are also
subject to the following borrowing constraint that prevents them from engaging
in Ponzi-type schemes:

lim
t→∞ e−

∫
t
0 [R(s)−π(s)]dsaj(t) ≥ 0. (9)

Given the price firm j charges for the good it produces, its sales are demand
determined and equal to:

y(hj) = Y dd

(
P j

P

)
. (10)

Household j chooses nonnegative measurable functions of time for the control
variables cj , mj , and hj and absolutely continuous functions of time for the state
variables P j and aj so as to maximize (7) subject to (8)–(10) taking as given
aj(0), P j(0), and the time paths of τ , R, Y d, and P . If the household’s problem
has an interior solution, then there exists an absolutely continuous function of
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time λj and a measurable function of time µj such that the following conditions
are satisfied:3

uc(cj ,mj) = λj (11)

um(cj ,mj) = λjR (12)

z′
(
hj
)

= λj
P j

P
y′(hj) − µjy′(hj) (13)

λ̇j = λj (r + π −R) (14)

λj
P j

P
y(hj) + µj

P j

P
Y dd′

(
P j

P

)
= γr(πj − π∗) − γπ̇j (15)

lim
t→∞ e−

∫ t
0 [R(s)−π(s)]dsaj(t) = 0 (16)

where πj ≡ Ṗ j/P j.

Monetary and Fiscal Policy

The monetary authority is assumed to set the nominal interest rate as an in-
creasing function of the inflation rate. Specifically, it conducts open market
operations so as to ensure that

R = R(π) ≡ R∗e
A

R∗ (π−π∗) (17)

where R∗, A, and π∗ are positive constants.4 This specification of the feed-
back rule implies that the nominal interest rate is strictly positive and strictly
increasing in the inflation rate. We will refer to monetary policy as active

3Note that one can express the household’s problem in the standard form of an infinite
horizon optimal control problem. Use equation (10) to eliminate hj from (7) and (8) and
introduce the variable qj ≡ Ṗ j to eliminate Ṗ j from (7). The state vector function of the
resulting problem is (aj , P j) and the control vector function is (cj , mj , qj), with the additional
evolution equation Ṗ j = qj . One can then apply a standard version of Pontryagin’s Maximum
Principle for infinite horizon optimal control problems to show that if the household’s problem
has a solution, then there exists an absolutely continuous function of time λj satisfying (11),
(12), (14), and (15), with hj and µj eliminated using (10) and (13). (See, for instance,
Seierstad and Sydsæter [22, chapter 3, Theorem 12].) It is clear from (13) that µj must
be measurable. We confirmed numerically that the Hamiltonian satisfies the conditions of
the Arrow sufficiency theorem for infinite horizons (Seierstad and Sydsæter [22, chapter 3,
Theorem 14] for aj , P j in a neighborhood of the equilibrium functions a, P .

4Note that we assume that the constant π∗ appearing in the interest rate feedback rule is
the same constant that plays a role in the household’s cost of adjusting prices. We make this
assumption for analytical convenience.
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(passive) if the monetary authority raises the nominal interest rate by more
(less) than one-for-one in response to an increase in the inflation rate, that is,
if R′(π) > (<)1.

The instant budget constraint of the government is given by

ȧ = (R − π)a−Rm− τ, (18)

where a denotes the real value of aggregate per capita government liabilities,
which consist of real balances and bonds. This budget constraint says that the
change in total government liabilities, ȧ, is equal to interest paid on outstanding
real liabilities, (R−π)a, minus interest savings from the issuance of money, Rm,
minus tax revenues, τ . The monetary-fiscal regime is assumed to be Ricardian
in the sense of Benhabib et al. [2]. That is, the monetary-fiscal regime ensures
that total government liabilities converge to zero in present discounted value for
all (equilibrium or off-equilibrium) paths of the price level or other endogenous
variables:5

lim
t→∞ e−

∫ t
0 [R(s)−π(s)]dsa(t) = 0. (19)

Equilibrium

In a symmetric equilibrium all household–firm units choose identical functions
for consumption, asset holdings, and prices. Thus, we can drop the superscript
j. In addition, the goods market must clear, that is,

c = y(h). (20)

Combining equations (11) and (12) yields a liquidity preference function of the
form

m = m(c, R). (21)

Given our maintained assumption about the normality of consumption and real
balances, the demand for money is increasing in consumption and decreasing in
the nominal interest rate. Using (17), (20), and (21) to eliminate R, c, and m
from (11) yields the following expression for h:

h = h(λ, π), (22)

where hλ < 0, hπucm < 0 if ucm �= 0, and hπ = 0 if ucm = 0.6

5As discussed in Benhabib et al. [2], an example of a Ricardian monetary-fiscal regime is
an interest-rate feedback rule like (17) in combination with the fiscal rule τ+Rm = αa; α > 0.
In the case in which α = R, this fiscal rule corresponds to a balanced-budget requirement.

6To see this, note that hλ = [umm − (um/uc)ucm]/[y′(uccumm − u2
cm)]. The assumed

concavity of the instant utility function and normality of consumption imply, respectively,
that the denominator of this expression is positive and that the numerator is negative. Also,
hπ = −hλucmmRR′(π), which is of the opposite sign of ucm.
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Let η ≡ d′(1) < −1 denote the equilibrium price elasticity of the demand
function faced by the individual firm. Using (13), (17), and (22) to eliminate µ,
R, and h from equations (14) and (15) yields

λ̇ = λ [r + π −R(π)] (23)

π̇ = r(π − π∗) − y(h(λ, π))λ
γ

[
1 + η − ηz′(h(λ, π))

λ y′(h(λ, π))

]
(24)

A perfect-foresight equilibrium is a pair of functions {λ, π} satisfying (23)
and (24). Given the equilibrium functions {λ, π}, the corresponding equilib-
rium functions {h, c, R,m} are uniquely determined by (22), (20), (17), and
(21), respectively. The assumed Ricardian nature of the monetary-fiscal regime
requires that the fiscal authority sets taxes in such a way that, given paths for
R, π, and m and an initial condition a(0), the path for a implied by equation
(18) satisfies the transversality condition (19).

4 Steady-state equilibria

A steady-state equilibrium is defined as a pair of constant functions {λ, π}
satisfying equations (23) and (24); that is,

0 = r + π −R∗e
A

R∗ (π−π∗) (25)

0 = r (π − π∗) − λy(h(λ, π))
γ

(
1 + η − η

z′ (h (λ, π))
λy′ (h (λ, π))

)
(26)

Recalling that R∗ = r + π∗, it is clear from (25) that in general there exist two
steady-state levels of inflation, π∗ and π̄, with π̄ < (>)π∗ if A > (<)1. If A = 1,
then π∗ is the unique steady-state level of inflation. Note that if A > 1, then
monetary policy is active at π∗ and passive at π̄. Conversely, if A < 1, monetary
policy is passive at π∗ and active at π̄.

The steady-state level of λ associated with π∗, λ∗, is given by the solution
to

1 + η

η
λ =

z′(h(λ, π∗))
y′(h(λ, π∗))

Because the right-hand side of this expression is positive and decreasing in λ,
λ∗ exists and is unique. The steady-state value of λ associated with π̄ is the
solution to

1 + η

η
λ =

z′(h(λ, π̄))
y′(h(λ, π̄))

− rγ

η

(π∗ − π̄)
y(h(λ, π̄))

.

If A < 1, then π∗ − π̄ < 0 and hence the right-hand side of this expression is
decreasing in λ. Therefore, if a steady-state value of λ exists, it is unique. On
the other hand, if A > 1, then π∗ − π̄ > 0 and the right-hand side of the above
expression may not be monotone in λ. Thus, multiple steady-state values of λ
may exist.
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5 Local equilibria

We now consider perfect-foresight equilibria in which λ and π remain bounded
in a small neighborhood around the steady state (λ∗, π∗) and converge asymp-
totically to it.

Linearizing equations (23) and (24) around (λ∗, π∗), we obtain the system:(
λ̇
π̇

)
= J

(
λ− λ∗

π − π∗

)
(27)

where

J =
[

0 uc(1 −A)
J21 J22

]

J21 =
yη

y′γ

[(
z′′ − z′y′′

y′

)
hλ − z′

λ

]
> 0

J22 = r +
yη

y′γ

(
z′′ − z′y′′

y′

)
hπ

The sign of the coefficient J22 depends on the sign of hπ, which in turn de-
pends on whether consumption and real balances are Edgeworth substitutes or
complements. Specifically, J22 is positive if ucm ≥ 0, and may be negative if
ucm < 0.7

If monetary policy is active at π∗ (A > 1), then the determinant of J is
positive, so that the real part of the roots of J have the same sign. Since
both λ and π are jump variables, the equilibrium is locally determinate if and
only if the trace of J is positive. It follows that if ucm ≥ 0, the equilibrium
is locally determinate. If ucm < 0, the equilibrium may be locally determinate
or indeterminate.8 If monetary policy is passive at π∗, (A < 1), then the
determinant of J is negative, so that the real part of the roots of J are of
opposite sign. In this case, the equilibrium is locally indeterminate.

One may be tempted to conclude from the above analysis that if ucm ≥ 0,
there is no indeterminacy problem under active monetary policy in the sense
that there exists no equilibrium allocation other than the active steady state,
starting in a small neighborhood around that steady state, with the property
that λ and π remain forever bounded. Such a conclusion, however, would be
misplaced because globally the picture may be quite different.

7As shown in Benhabib et al. [2], an aggregate supply schedule like the one given by
the second row of (27) also arises in the context of a staggered price setting model with
optimizing firms like Yun’s [27] extension of Calvo [4]. In Calvo’s original model, firms change
prices according to a rule of thumb that results in an aggregate supply function in which π̇ is
only a function of aggregate demand (J22 = 0).

8Benhabib et al. [2] show that the economy with ucm < 0 is similar to one without money
in the utility function but money entering the production function.
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6 Global equilibria

In order to characterize global equilibrium dynamics, in this section, we assume
particular functional forms for preferences and technology. We assume that the
instant utility function displays constant relative risk aversion in a composite
good, which in turn is produced with consumption goods and real balances via
a CES aggregator. Formally,

u(c,m) − z(h) =

[
(xcq + (1 − x)mq)

1
q

]w
w

− h1+v

1 + v
; q, w ≤ 1, v > 0 (28)

The restrictions imposed on q and w ensure that u(·, ·) is concave, c and m are
normal goods, and the interest elasticity of money demand is strictly negative.9

The production function takes the form

y(h) = hα; 0 < α < 1

In the recent related literature on determinacy of equilibrium under alter-
native specifications of Taylor rules, it is typically assumed that preferences are
separable in consumption and real balances (e.g., Woodford [26], Bernanke and
Woodford [3], and Clarida et al. [5]). We therefore characterize the equilibrium
under this preference specification first, before turning to the more general case.

6.1 Separable preferences

The case of separable preferences arises when the intra- and intertemporal elas-
ticities of substitution take the same value, that is, when q = w. In this case
the equilibrium conditions (23) and (24) become

λ̇ = λ
[
r + π −R∗e

A
R∗ (π−π∗)

]
(29)

π̇ = r(π − π∗) − 1 + η

γ
λωxαθ +

η

αγ
λβx(1+v)θ (30)

where β ≡ (1 + v)/(α(w − 1)) < 0, ω ≡ w/(w − 1), and θ ≡ 1/(α(1 − w)).
Throughout this subsection we assume that

R∗ = r + π∗.

This expression implies that π∗ solves (29) when λ̇ = 0. Evaluating (30) at
π̇ = 0 and π = π∗, it follows that λ∗ must satisfy

1 + η

γ
λ∗ωxαθ =

η

αγ
λ∗βx(1+v)θ ≡ M < 0.

Evaluating (30) at π = π̄ and setting π̇ = 0 yields the following expression
defining the steady-state value of λ, λ̄, associated with π̄

r(π̄ − π∗) = M(λ̄ω − λ̄β).
9Note that the sign of ucm equals the sign of w − q.
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Because π̄ < π∗ for A > 1 and ω ≥ 0 for w ≤ 0, it follows from this expression
that if A > 1 and w ≤ 0, then λ̄ exists and is unique.10 Thus, in this subsection
we assume that w ≤ 0; that is, the intertemporal elasticity of substitution does
not exceed unity.

The main result of this subsection is that in the economy described above
there exists an infinite number of equilibrium trajectories originating arbitrarily
close to the steady state at which monetary policy is active that converge either
to the steady state at which monetary policy is passive or to a limit cycle. In
section 5, we showed that if one restricts the analysis to equilibria in which π
and λ remain forever bounded in an arbitrarily small neighborhood of the active
steady state, then the unique perfect-foresight equilibrium is the steady state
itself. Thus, the picture that arises from a local analysis might wrongly lead
one to conclude that active monetary policy is stabilizing when in fact it is not.
The following proposition formalizes this result.

Proposition 1 (Global indeterminacy under active monetary policy
and separable preferences) Suppose preferences are separable in consumption
and real balances (q = w). Then, for r and A−1 positive and sufficiently small,
the equilibrium exhibits indeterminacy as follows: trajectories originating in the
neighborhood of the steady state (λ, π) = (λ∗, π∗), at which monetary policy is
active, converge either to the other steady state, (λ̄, π̄), at which monetary policy
is passive or to a limit cycle around (λ∗, π∗). In the first case, there exists a
saddle connection and the dimension of indeterminacy is one, whereas in the
latter case the dimension of indeterminacy is two.

Proof: See the Appendix.

This result is likely to also arise in models with alternative specifications of
the source of nominal rigidities. For example, in a model with staggered price
setting like Yun’s [27] extension of Calvo [4], the aggregate supply schedule takes
a form that is qualitatively similar to (30). Thus, we conjecture that the Calvo-
Yun model exhibits global indeterminacy of the kind described in Proposition 1
as well.11

Figure 3 illustrates the existence of a saddle connection from the steady state
at which monetary policy is active to the steady state at which monetary policy
is passive. In computing the equilibrium dynamics of π and λ, the assumed
time unit is a quarter. The parameters R∗, π∗, and r were set at .06/4, .042/4,
and .018/4, respectively. The parameter A was set at 1.5, so that at the active

10If w = 0, λ̄ may not exist for all parameterizations of the model. For r sufficiently close
to zero or A sufficiently close to one (or both), λ̄ always exists.

11In Calvo’s [4] original sticky-price model, the aggregate supply function takes the form
π̇ = f(λ). In this case, the equilibrium conditions (29)-(30) form a conservative Hamiltonian
system whose Jacobian has a zero trace and a positive determinant under active monetary
policy. Such a system gives rise to a continuum of cycles surrounding the active steady state.
These cycles are enclosed by a homoclinic orbit formed by the connection of the stable and
unstable manifolds of the passive steady state. The period of the cycles approaches infinity
as the cycles get closer to the homoclinic orbit.
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Figure 3: Separable preferences: Saddle connection from the active to the pas-
sive steady state
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steady state the Taylor rule has the slope suggested by Taylor [23]. These
parameter values imply that at the active steady state the nominal interest rate
is 6 percent per year, which equals the average three-months Treasury Bill rate
in the period 1960:1-1998:9, the inflation rate is 4.2 percent per year, which is
consistent with the average U.S. inflation rate over the period 1960:Q1-1998:Q3
as measured by the GDP deflator, and the real discount rate is 1.8 percent per
year. In addition, we set w = q = −1 so that the instant utility function is
separable in consumption and real balances, and the intertemporal elasticity of
substitution equals 1/2. The parameter x was set at a value consistent with
an annual consumption velocity of money of 3. The labor share, α, was set
at .7, and the labor supply elasticity at 1. The value of η was chosen so that
the implied markup of prices over marginal cost at the active steady state is 5
percent, which is consistent with the evidence presented by Basu and Fernald [1].
Finally, following Sbordone [20], we set γ, the parameter governing the disutility
of deviating from the inflation target, at −17.5(1 + η). Table 1 summarizes the
calibration. The inflation rate at the passive steady state is 0.7 percent per
year, and the sensitivity of the Taylor rule with respect to inflation is .63. The
active steady state is a source and the passive steady state is a saddle. Thus,
the active steady state is locally the unique rational expectations equilibrium
whereas around the passive steady state the equilibrium is indeterminate. The
solid line in figure 3 displays the saddle path converging to the passive steady
state. The dashed line corresponds to the unstable manifold diverging from the
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Table 1: Calibration

R∗ π∗ r A w q c/m α v η
1+η γ

.06/4 .042/4 .018/4 1.5 -1 -1 3/4 .7 1 1.05 350

Notes: (1) The time unit is one quarter. (2) x/(1 − x) = (c/m)1−q/R∗.

passive steady state.
Three features of figure 3 are noteworthy. First, the indeterminacy result

established in Proposition 1 seems to hold not only for pairs (r, A) close to
(0, 1) but also for empirically relevant values. Second, the saddle connection
is not inconsistent with the observation that the inflation rate fluctuates for
long periods of time in a region in which monetary policy is active, as has
been argued is the case of the U.S. economy since the Volcker era (see Clarida,
et al. [5]; and Rotemberg and Woodford, [18]). In our calibrated economy
monetary policy is active for all inflation rates exceeding 2.6 percent per year.
Third, one argument for restricting attention to local dynamics is that observed
inflation fluctuations at business-cycle frequencies are relatively small. The
global dynamics illustrated in figure 3 suggest that the short-term fluctuations
in the inflation rate along the saddle connection are empirically plausible, with
a maximum annual inflation rate of 5.7 percent and a minimum of 0.7 percent.

The dynamics are robust to wide variations in parameter values. Figure 4
illustrates that the saddle path connecting the steady state at which monetary
policy is active with the steady state at which policy is passive does not dis-
appear if: (a) A, the slope of the Taylor rule at π = π∗, is increased from the
baseline value of 1.5 to a value of 2, which, as some authors may argue, reflects
more closely the stance of U.S. monetary policy in the post-Volcker era (see,
again, Clarida, et al. [5]; and Rotemberg and Woodford [18]); (b) π∗, the infla-
tion rate associated with the active steady state, is set at 3 percent per year.
This case illustrates that the global indeterminacy result does not hinge in any
important way on the inflation rate being high at the active steady state. (Note
that the inflation rate at the corresponding passive steady state is negative.);
(c) γ, the parameter governing the cost of deviating from the inflation target,
is reduced from its baseline value of 350 to 35. Although not noticeable in the
figure, for such a low value of γ, the economy converges from the vicinity of
the active steady state to the passive steady state at a much higher speed than
under the baseline calibration; (d) the annual consumption velocity of money is
increased from 3 to 20. This result is of particular interest in light of the view
that as a result of financial innovation agents are increasingly able to perform
transactions without money; (e) The discount rate, r, takes a value of 4 percent
per year, a value commonly used in the real-business-cycle literature (Prescott
[15]); and (f) a markup of prices over marginal cost of 20 percent is assumed.
This number reflects the upper range of available empirical estimates (see Basu
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Figure 4: Separable preferences: Sensitivity analysis
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and Fernald [1]).

6.2 Non-separable preferences

In this subsection, we consider preference specifications for which the intra- and
intertemporal elasticities of substitution are different from each other (q �= w).
In this case, the equilibrium conditions (23) and (24) can be written as

λ̇ = λ
[
r + π −R∗e

A
R∗ (π−π∗)

]
(31)

π̇ = r(π − π∗) − 1 + η

γ
xαθλω

[
(R∗)χ

(
1 − x

x

)1−χ
e

A
R∗ χ(π−π∗) + 1

]αξ
(32)

+
η

αγ
x(1+v)θλβ

[
(R∗)χ

(
1 − x

x

)1−χ
e

A
R∗ χ(π−π∗) + 1

](1+v)ξ

,
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where β and ω are defined as in the previous subsection and χ ≡ q/(q − 1),
ξ ≡ (w− q)/[αq(1−w)] �= 0, and θ ≡ w/[αq(1−w)]. Let λ∗ be the steady-state
value of λ associated with π = π∗, A = 1, r = rc, and R∗ = π∗ + rc (with rc to
be determined below). Then, by equation (32) λ∗ is implicitly defined by

1 + η

γ
xαθ(λ∗)ω

(
(R∗)χ

(
1 − x

x

)1−χ
+ 1

)αξ
=

η

αγ
x(1+v)θ(λ∗)β

(
(R∗)χ

(
1 − x

x

)1−χ
+ 1

)ξ(1+v)
≡ M.

The parameter rc is defined as the value of r that makes the trace of the Jacobian
of the system (31)-(32) equal to zero for A = 1. That is, rc is implicitly given
by

rc = −Bξ
(

1
rc + π∗

)
χM (1 + v − α) , (33)

where

B ≡ (R∗)χ
(

1−x
x

)1−χ
1 + (R∗)χ

(
1−x
x

)1−χ .
Inspection of (33) reveals that the existence of a positive rc depends on pa-
rameter values. For example, one can show that a positive rc always exists if
q ∈ (0, 1) and q − w, π∗ > 0. Throughout this subsection, we assume that R∗

is fixed and equal to rc + π∗. When (r, A) = (rc, 1), the point (λ, π) = (λ∗, π∗)
is the unique steady state of the system (31)-(32). At that point, monetary
policy is neither active nor passive (R′(π∗) = 1). For parameter configurations
in which (r, A) �= (rc, 1), the economy displays in general either none or two
steady-state values of π. When two steady-state values of π exist, the larger of
them corresponds to an active monetary policy stance and the smaller one to
a passive stance. In addition, each steady-state value of π is associated with
one or two steady-state values of λ. The following lemma shows that under
the assumption that the intertemporal elasticity of substitution is less than one
(w < 0), each steady-state value of π is associated with a unique steady-state
value of λ. For this reason and because it is clearly the case of greatest empirical
relevance, in what follows we assume that w < 0. The lemma also shows that
the steady state at which monetary policy is active is either a sink or a source,
while the steady state at which monetary policy is passive is always a saddle.

Lemma 1 Suppose w < 0. Then, the steady states of the system (31) and (32)
satisfy: (i) for each steady-state value of π there exists a unique steady-state
value of λ; and (ii) the steady state at which monetary policy is active is either
a sink or a source and the steady state at which monetary policy is passive is
always a saddle.
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Proof: See the appendix.

The next proposition contains the main result of this subsection. Namely,
that if the steady state at which monetary policy is active is locally the unique
equilibrium (i.e., the steady state is a source), then the equilibrium is globally
indeterminate. Specifically, there exist equilibrium trajectories originating arbi-
trarily close to the steady state at which monetary policy is active that converge
either to a limit cycle or to the other steady state, at which monetary policy is
passive.

Proposition 2 (Global indeterminacy under active monetary policy
and non-separable preferences) For parameter specifications (r, A) suffi-
ciently close to (rc, 1), the economy with non-separable preferences exhibits in-
determinacy as follows: There always exist an infinite number of equilibrium
trajectories originating arbitrarily close to the steady state at which monetary
policy is active that converge either to: (i) that steady state; (ii) a limit cycle;
or (iii) the other steady state at which monetary policy is passive. In cases (i)
and (ii) the dimension of indeterminacy is two, whereas in case (iii) it is one.

Proof: See the appendix.

The following corollary establishes parameter restrictions under which at-
tracting limit cycles exist around the steady state at which monetary policy is
active.

Corollary 1 (Periodic equilibria) If − 1−B
B(1+v+α) < ξ < 0, then there exists

a region in the neighborhood of (r, A) = (rc, 1) for which the active steady state
is a source surrounded by a stable limit cycle. On the other hand, if ξ > 0 or
ξ < − 1−B

B(1+v+α) , then stable limit cycles do not exist.

Proof: See the appendix.

It is important to recall that the equilibrium remains globally indeterminate
even if limit cycles do not exist. This is because in that case there always exists
an equilibrium trajectory connecting the active steady state with the passive
one. In fact, as shown in figures 5 and 6, a saddle connection is the typical
pattern that arises under plausible parameterizations of the model with non-
separable preferences. In both figures, the calibration is the same as the one
used in the economy with separable preferences, summarized in table 1, ex-
cept, of course, that now the intratemporal elasticity of substitution between
consumption and real balances, 1/(1 − q), is assumed to be different from the
intertemporal elasticity of substitution, 1/(1−w). In both figures, the intertem-
poral elasticity of substitution takes its baseline value of .5. In figure 5, q is set
at -9, a value consistent with a log-log interest elasticity of money demand of
-.1.12 In this case, w > q, which implies that consumption and real balances are
Edgeworth complements (ucm > 0).13 In figure 6, q is set at −0.975, which cor-

12Given the particular functional form assumed for preferences in this subsection, the liq-
uidity preference function (21) takes the form m(c, R) = [x/(1− x)]1/(q−1)R1/(q−1)c.

13When ucm > 0, the economy is equivalent to a cash-in-advance economy with cash and
credit goods like the one developed by Lucas and Stokey [14].
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Figure 5: Non-separable preferences, w > q: Saddle connection from the active
to the passive steady state
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responds to a log-log interest elasticity of money demand of −1/2. In this case,
w < q, so consumption and money are Edgeworth substitutes (ucm < 0). Under
both parameterizations, the active steady state is locally the unique perfect-
foresight equilibrium (i.e., the active steady state is a source). However, as the
figures suggest, from a global perspective it is clear that an infinite number
of trajectories originating arbitrarily close to the active steady state and on
the saddle connection can be supported as equilibrium outcomes because they
converge to the passive steady state.

The pattern illustrated in figures 5 and 6 is unchanged for values of q between
-.975 and -9, the two values assumed in the figures. As q is increased above -
.975, the active steady state becomes a sink and thus the equilibrium is locally
indeterminate. If w > q (ucm > 0), the simulation results are, as in the case
of separable preferences, robust to wide variations in other parameter values.
In particular, a saddle path connecting the active steady state with the passive
one continues to exist for more aggressive Taylor rules (A ≥ 2) and lower costs
of price adjustment (for example, γ = 35). In the case that q > w (ucm < 0),
parameter variations may or may not eliminate the saddle connection. However,
when the saddle connection disappears, it is typically replaced by a situation in
which the active steady state is a sink, which is locally a more severe case of
indeterminacy.

20



Figure 6: Non-separable preferences, w < q: Saddle connection from the active
to the passive steady state
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7 Final Remarks

This paper shows that in a sticky-price model when a global analysis is under-
taken, the existence of a steady state with active monetary policy generically
leads to global indeterminacy. Although the propositions above are proven for
specific functional forms to facilitate checking for non-degeneracies, it is clear
from the general structure of the equilibrium conditions that generically alter-
native specifications for smooth preferences and the interest rate feedback rule
will give rise to similar results, as long as the feedback rule assures the exis-
tence of a steady state with an active monetary policy. The main results of
the paper also obtain in discrete time. For example, Schmitt-Grohé and Uribe
[21] show that in a discrete-time, flexible price, cash-in-advance economy, the
equilibrium dynamics are described by a scalar system where a continuous in-
terest rate feedback rule generating a steady state with active monetary policy
implies the existence of a passive steady state, with all the implications for
global indeterminacy, quite independently of the structure of preferences and
production.

In closing, we wish to relate our results on liquidity traps to those of a recent
paper by Krugman [10]. A crucial common element in both Krugman’s and our
analyzes is the zero bound on nominal rates. Two additional key ingredients
in Krugman’s model of a liquidity trap are the assumptions of a negative real
interest rate and that the government is committed to price stability. The way
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in which liquidity traps come about in Krugman’s setting is quite intuitive.
When the real interest rate is negative, the zero bound on nominal rates implies
that, regardless of the stance of monetary policy, expected inflation must be
positive. If the monetary authority stubbornly adheres to a price level target,
then expected inflation must be accompanied by a decline in the current price
level. Of the three building blocks of Krugman’s framework, the one that has
received the most criticism is the assumption of a negative real interest rate
(see, for instance, Rogoff [16]). By contrast, in our model liquidity traps arise
even if the real interest rate is positive. Liquidity traps emerge as a consequence
of the central bank’s firm commitment to an interest rate feedback rule, which
in combination with the zero bound, prevents the monetary authority from
credibly threatening to follow an inflationary policy at near-zero interest rates.
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Appendix

Proof of Proposition 1

Preliminaries

To prove Proposition 1 we apply the following theorem due to Kopell and
Howard [9]:

Theorem (Kopell and Howard [9, Theorem 7.1:]) Let Ẋ = Fµ,ν(X) be a
two-parameter family of ordinary differential equations on R2, F smooth in all
of its four arguments, such that Fµ,ν(0) = 0. Also assume:

1. dF0,0(0) has a double zero eigenvalue and a single eigenvector e.

2. The mapping (µ, ν) → (det dFµ,ν(0), tr dFµ,ν(0)) has a nonzero Jacobian
at (µ, ν) = (0, 0).

3. Let Q(X,X) be the 2 × 1 vector containing the terms quadratic in the xi
and independent of (µ, ν) in a Taylor series expansion of Fµ,ν(X) around
0. Then [dF(0,0)(0), Q(e, e)] has rank 2.

Then: There is a curve f(µ, ν) = 0 such that if f(µ0, ν0) = 0, then Ẋ =
Fµ0,ν0(X) has a homoclinic orbit. This one-parameter family of homoclinic or-
bits (in (X,µ, ν) space) is on the boundary of a two-parameter family of periodic
solutions. For all |µ|, |ν| sufficiently small, if Ẋ = Fµ,ν(X) has neither a ho-
moclinic orbit nor a periodic solution, there is a unique trajectory joining the
critical points.

To apply this theorem, we must first perform several changes of variables
and a Taylor series expansion of the equilibrium conditions around the steady
state. Let p ≡ π − π∗ and n ≡ ln(λ/λ∗). Then the equilibrium conditions (29)
and (30) can be expressed as

ṅ = R∗ + p−R∗e(
A

R∗ )p (34)
ṗ = rp− γ−1 (1 + η) (λ∗)ω eωnxαθ

+α−1γ−1η (λ∗)β eβnxθ(1+v) (35)

Defining y = p/[M(β − ω)] and s = R∗n, we have

ṡ = R∗2 + M(β − ω)R∗y −R∗2e
A

R∗M(β−ω)y

ẏ = ry + (e
β

R∗ s − e
ω

R∗ s)/(β − ω)

We now take a Taylor series expansion of these two equations around (s, y) =
(0, 0), which yields

ṡ = R∗(1 −A)M (β − ω) y − [AM(β − ω)]2

2
y2 − [AM(β − ω)]3

3!R∗ y3 − . . .(36)

ẏ = ry +
s

R∗ +
1

β − ω

((
β2 − ω2

)
2R∗2 s2 +

(
β3 − ω3

)
3!R∗3 s3 + ...

)
(37)
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with Jacobian

J =
[

0 R∗(1 −A)M(β − ω)
1/R∗ r

]

which reduces to [
0 0

1/R∗ 0

]

when r = (1 −A) = 0. We are now ready prove Proposition 1.

Proof of Proposition 1:

We prove the proposition by showing that for (r, 1−A) small enough, the system
of differential equations (36)-(37) satisfies the hypotheses of the Kopell-Howard
Theorem stated above. Let µ ≡ r, ν ≡ 1 − A, and X ≡ [s ; y]. Then, the
system (36)-(37) can be expressed as Ẋ = Fµ,ν(X). We have that dF0,0(0) =
[0 0; 1/R∗ 0]. Clearly, dF0,0 has a double zero eigenvalue and a single eigenvec-
tor e = [0 ; 1]. The Jacobian of the mapping (µ, ν) → (det dFµ,ν(0), tr dFµ,ν(0))
at (µ, ν) = (0, 0) is given by [0 −M(β−ω); 1 0] and is different from zero.
Note that neither λ∗ nor M depend on µ or ν. The vector Q(e, e) is given by
[−M2(β −ω)2/2 ; 0]. It follows that [dF0,0(0) Q(e, e)] has rank 2. The propo-
sition follows from the facts that the active steady state is a source, the passive
steady state is a saddle, and both s and y are jump variables.

Proof of Lemma 1

(i) w < 0 implies that ω > 0. Given a steady-state value π̄ the uniqueness of the
associated steady-state value of λ follows directly from evaluating (32) at π̇ = 0
and π = π̄ and recalling that β, 1 + η < 0. (ii) By definition, monetary policy is
active (passive) at a given steady state (λ̄, π̄) if and only if Ae(

A
R∗ ) ¯π−π∗

> (<)1.
Let J denote the Jacobian of (31)-(32). Then J11 = 0. Therefore, the deter-
minant of J is given by −J21J12. The element J12 equals λ̄

[
1 −Ae

A
R∗ (π̄−π∗)

]
which is negative (positive) if monetary policy is active (passive). The element
J21 is given by

J21 = −ω 1 + η

γ
xαθλ̄ω−1

[
(R∗)χ

(
1 − x

x

)1−χ
e

A
R∗ χ(π̄−π∗) + 1

]αξ

+ β
η

αγ
x(1+v)θλ̄β−1

[
(R∗)χ

(
1 − x

x

)1−χ
e

A
R∗ χ(π̄−π∗) + 1

](1+v)ξ

,

which is clearly positive. Therefore, the determinant of J is positive (negative)
if and only if monetary policy is active (passive).

24



Proof of Proposition 2

We prove the proposition by applying a theorem and a lemma from Kuznetsov
[11] that together allow us to transform the system of equilibrium conditions
into a simpler, topologically equivalent planar system of differential equations
with known bifurcation diagram. Technically, we show that the system (31)-(32)
exhibits a Bogdanov-Takens (double-zero) bifurcation at (r, A) = (rc, 1).

Preliminaries

Let n ≡ ln(λ/λ∗) and y ≡ (π − π∗)/[M(β − ω)]. Then, equilibrium conditions
(31) and (32) can be written as

ẏ = ry −
(

eωn

β − ω

)(
Be

A
R∗ χM(β−ω)y + 1 −B

)αξ
(38)

+
(

eβn

β − ω

)(
Be

A
R∗ χM(β−ω)y + 1 −B

)(1+v)ξ

ṅ = r + π∗ + M(β − ω)y −R∗e
A

R∗M(β−ω)y. (39)

Taking a Taylor series expansion of the right-hand side of this system around
(y, n) = (0, 0) yields

ẏ =
[
r + Bξ

A

R∗χM(1 + v − α)
]
y + n + (40)

1
2
Bξ(β − ω)

(
A

R∗χM
)2 [

(1 + v − α)(1 −B) + Bξ((1 + v)2 − α2)
]
y2 +

Bξ
A

R∗χM [β(1 + v) − ωα]yn +
1
2

(β + ω)n2 + . . .

ṅ = (r + π∗ −R∗) + M(β − ω)(1 −A)y −
1
2
R∗
(
A

R∗M(β − ω)
)2

y2 − . . . (41)

The Jacobian of this system is[
r + Bξ AR∗χM(1 + v − α) 1

M(β − ω)(1 −A) 0

]
.

At (r, A) = (rc, 1) this Jacobian collapses to[
0 1
0 0

]
,

which has two zero eigenvalues (the Bogdanov-Takens condition). We now state
the aforementioned theorem and lemma from Kuznetsov [11].

Theorem (Normal form representation, Kuznetsov [11, Theorem 8.4]):
Suppose that a planar system

ẋ = f(x, α), x ∈ R2, α ∈ R2,
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with smooth f , has at α = 0 the equilibrium x = 0 with a double zero eigenvalue.
Via a Taylor series expansion around x = 0 and transformation of variables,
this system can be expressed as:

ẏ1 = y2 + a00 (α) + a10 (α) y1 + a01 (α) y2

+
1
2
a20 (α) y2

1 + a11 (α) y1y2 +
1
2
a02 (α) y2

2 + P1 (y, α)

ẏ2 = b00 (α) + b10 (α) y1 + b01 (α) y2

+
1
2
b20 (α) y2

1 + b11 (α) y1y2 +
1
2
b02 (α) y2

2 + P2 (y, α) ,

where alk (α), blk (α), and P1,2 (y, α) = O(‖ y ‖)3 are smooth functions of their
arguments. Assume that

a00 (0) = a10 (0) = a01 (0) = b00 (0) = b10 (0) = b01 (0) = 0

and that the following nondegeneracy conditions are satisfied:

(BT.0) the Jacobian matrix ∂f
∂x (0, 0) �= 0;

(BT.1) a20(0) + b11(0) �= 0;

(BT.2) b20(0) �= 0;

(BT.3) the map

(x, α) �→
(
f(x, α), tr

(
∂f(x, α)

∂x

)
, det

(
∂f(x, α)

∂x

))
is regular at point (x, α) = (0, 0).

Then there exist smooth invertible variable transformations smoothly depending
on the parameters, a direction-preserving time reparameterization, and smooth
invertible parameter changes, which together reduce the system to{

η̇1 = η2

η̇2 = β1 + β2η1 + η2
1 + sη1η2 + O(‖ η ‖3) ,

where s = sign[b20(0)(a20(0) + b11(0))] = ±1.

The explicit steps of the transformation of variables is given in Kuznetsov
[11]. We note that β1 and β2 are functions of α satisfying β1 (α) = β2 (α) = 0
for α = 0.

Lemma (Effect of higher-order terms, Kuznetsov [11, Lemma 8.8]):
The system {

η̇1 = η2

η̇2 = β1 + β2η1 + η2
1 ± η1η2 + O(‖ η ‖3)

is locally topologically equivalent near the origin to the system{
η̇1 = η2

η̇2 = β1 + β2η1 + η2
1 ± η1η2

.

We are now ready to prove Proposition 2.
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Proof of proposition 2:

We first show that the system (31)-(32) of equilibrium conditions of the economy
with non-separable preferences is in general locally (i.e., near (r, A) = (rc, 1))
topologically equivalent near the steady state (λ, π) = (λ∗, π∗) to the system{

η̇1 = η2

η̇2 = β1 + β2η1 + η2
1 ± η1η2.

(42)

The first step is to show that the conditions of Theorem 8.4 of Kuznetsov [11]
are satisfied by the transformation of (31)-(32) given by (38)-(39). Let x ≡
(y, n) and α ≡ (1 − A, r − rc). Then the system (38)-(39) can be expressed as
ẋ = f(x, α). We have shown above that (38)-(39) has at α = 0 the equilibrium
x = 0 with a non-zero Jacobian. Thus, BT.0 is satisfied. We have also shown
that at (x, α) = (0, 0) the Jacobian has a double zero eigenvalue. It is clear from
(40)-(41) that

a00 (0) = a10 (0) = a01 (0) = b00 (0) = b10 (0) = b01 (0) = 0.

Also, a20(0) = Bξ(β − ω)
(

1
R∗χM

)2 [(1 + v − α)(1 − B) + Bξ((1 + v)2 − α2)
]

and b20(0) = −R∗[1/R∗M(β − ω)]2 are in general non-zero while b11(0) = 0.
Therefore, BT.1 and BT.2 are satisfied. The Jacobian of the mapping (x, α) �→(
f(x, α), tr

(
∂f(x,α)
∂x

)
, det

(
∂f(x,α)
∂x

))
at (x, α) = (0, 0) is given by:




0 1 0 0
0 0 0 1

a20(0) a11(0) rc 1
−b20(0) 0 −1 0


 ,

where a11(0) = BξχMR∗−1[β(1 + v) − ωα]. The determinant of this Jacobian
is equal to −b20(0)rc, which is in general different from zero, so that the map
is regular at (x, α) = (0, 0) and condition BT.3 is satisfied. The claim that
the equilibrium conditions have the normal form representation given by (42)
follows from the theorem and the lemma stated above. Proposition 2 then
follows directly from Lemma 1 and the properties of the the bifurcation diagram
of (42) (see Kuznetsov [11, section 8.4.2] for the case in which the coefficient on
η1η2 is −1 and Guckenheimer and Holmes [8, section 7.3] for the case in which
the coefficient on η1η2 is +1).

Proof of Corollary 1

The existence of stable limit cycles depends on the sign of the coefficient of η1η2

in (42), which is equal to the sign of the parameter s defined in Theorem 8.4
of Kuznetsov [11] stated above. As shown in Kuznetsov [11], if s is negative
there exists a region in the vicinity of (r, A) = (rc, 1) for which stable limit
cycles emerge. If s is positive, then stable limit cycles do not exist. In the
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economy with non-separable preferences, s = −sign(a20(0)), where a20(0) is
given in terms of the structural parameters of the economy in the proof of
Proposition 2.
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